Classification of athletes with coördination impairment in Wheelchair Rugby

Impact Coordination Impairment on sport specific activities

Kees van Breukelen, MSc; Wheelchairsport classifier Eline Lammens, MSc student

Athletes with Coördination Impairment

Athletes with:

- Hypertonia: 86%, Motor cortex damage, muscles appear stiff/tight.
- Athetosis: 6%, Basal ganglia damage, continue unvoluntary movements.
- Ataxia: 6%, Cerebellum damage, characterized by shaky movements.

Relation Research and Classification

This study: Evidence based practice*

Integration of:

- \rightarrow (1) clinical expertise/expert opinion with
- \rightarrow (2) the best available external evidence
- \rightarrow (3) athletes preference.

Breukelen, K. van (2017). Impact of Trunk Impairment; On sport specific activities that determine performance in WR. * Sackett, D. (1997). Evidence-Based Medicine. *W.B. Saunders Company*.

Background study

• Current problem IWRF-classification:

No specific assessment protocol,
No specific tests for coordination yet (in Manual),

 O While more and more athletes with coördination impairment on the WR court (Team NL: 4 athletes)

Lack of standardized assessment till now leads to:

Different approaches between classifiers
 Lack of reliability between classification panels
 Increased possibility of different outcomes

= unwished practice which undermine the faith in classification.

Purpose study

- Presenting a theoretical/practical <u>frame of reference</u>, (this presentation)
- Generating practical *instruments* for the classification of athletes with coördination impairment.

Methods study

- Assessment of 30 athletes with coördination impairment coming from the sports WR, WB, PCH and HC (period 2016-2018).
- (a) Repetitive Movement Tests,
- (b) ASAS testing,
- (c) Filmed during national and international competition.

Results study (1)

- Physical Assessment: ROM limitations, accuracy limitations, reduced speed of movements, 'catches' found in ASAS scoring: summarised to 2 main concepts of coördination impairment:
- Concepts (A) 'Co-contraction' and (B) 'Dissociation inability' were found useful in analysing the movement pattern of athletes with coördination impairment, and...

Results study (2)

- Concepts 'Co-contraction' and 'Dissociation inability' were transformed into an assessment protocol / practical tool for the classification of these athletes:
 - 1. An (additional) *assessment form* when classifying athletes with coördination impairment.
 - 2. A *document/article* explaining the classification protocol

Definition Coördination Impairment

- (A) The inability to: contract the agonist and at the same time relax the antagonist, to make a smooth, well directed, repetitive movement at maximum voluntary velocity and adequate ROM in <u>one body</u> <u>segment</u>. The opposite happens: *Co-contraction*
- (B) The inability to: combine opposite movements of <u>several body</u> <u>segments</u> at the same time (extension in one segment and flexion in the other segment): **Dissociation inability**.
- (Altmann & Groeneweg, 2016; van Breukelen et al., 2015; Sanger et al., 2003).

Co-contraction one body segment: Arm

+ Dissociation inability two body segments: Arm-Trunk

Dissociation (Arm-Hand)

Dissociation inability (Arm-Hand)

Concept of 'Maximal Effort'

Eligibility testing / Physical Assessment

RMT, Repetitive Movement testing in:

- shoulders, elbows, forearm, wrist and fingers.
- location + severity: amplitude/accuracy + movement speed

Research Altmann (2018): forearm pro-supination score < 66 in 20 sec and/or wrist flexion/extension score < 68 in 20 sec = coordination impairment which do give the, maximum, 3.0 handscore. (3.5 is a normal arm/hand)

Mirror movements

 "Mirror movement refers to simultaneous contralateral, involuntary, identical movements that accompany voluntary movements".

• Proves that the coordination impairment is reflected in hands and arms.

Nadkami, N., & Deshmukh, S. (2012). Mirror movements. Annals of Indian Academy of Neurology Kuhtz-Buschbeck, J., Krumlind Sundholm, L., Eliasson, A., & Forssberg, H. (2000). Quantitative assessment of mirror movements in children and adolescents with hemiplegic cerebral palsy. Developmental Medicine & Child Neurology.

Impact

Classification: the association between:(1) Measure of impairments and(2) Determinants of sport performance

• The *impact* of the impairment on the sportspecific activities in WR:

- (1) Pushing
- (2) Ballhandling

Impact Co-contraction/Dissociation inability on Wheelchair Pushing:

Pushing forward: (a) -frequence, (b) -volume
 Pushing reverse
 Braking/Turning

Impact Co-contraction

Arm pushing frequence

Normal: frequency of, at least, 2 strokes each second.
 Decreased: 1,5 strokes each second can be seen already as a 'decreased' pushing frequency.
 Limited: 1 stroke each second, is (very) limited.

 Vanlandewijck, Y., Theisen, D., & Daly, D. (2001). Wheelchair Propulsion Biomechanics; Implications for Wheelchair Sports. *Sports Med*, 339-367
 Lenton, J., Woude, L., Fowler, N., & Goosey-Tolfrey, V. (2009). Effects of arm frequency during synchronous and asynchronous wheelchair propulsion on efficiency. *International Journal of Sports Medicine*, 233-239.

Fline Lammens, BSc studer

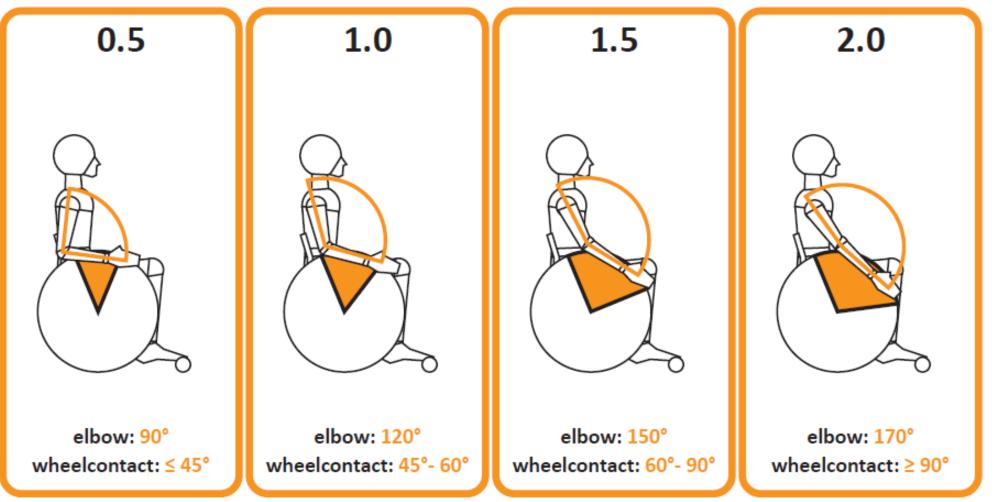
Impact Co-contraction

Arm Pushing Volume:

 Co-contraction of the elbow (biceps/triceps) impacts the angle between contact point hand on the wheel and release hand of the wheel

Impact Co-contraction

Arm pushing Volume


- the hands will go back to the rear earlier, after one push.
- Result: the amount of power will be less and the end speed will be decreased.
 O Power = Force * Velocity = Force * Displacement/Time

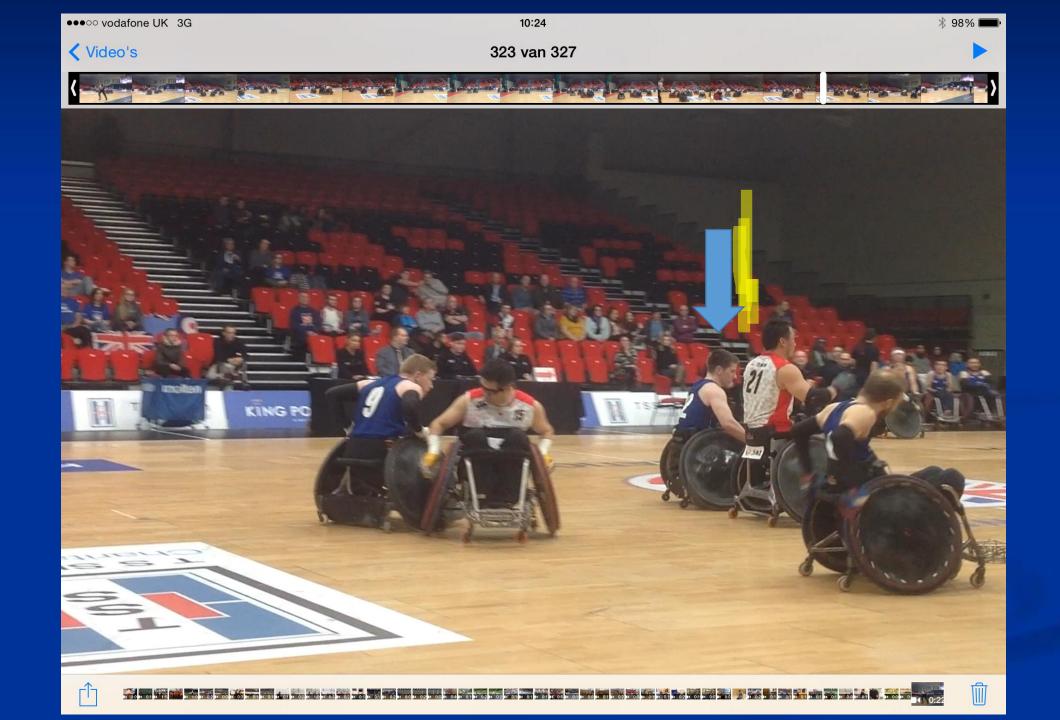
Energielevering bij inspanning. (2011). In J. Morree, M. Jongert, & G. Poel, *Inspanningsfysiologie, oefentherapie en training* (pp. 19-21). Houten: Bohn Stafleu van Loghum.

Arm-pushing volume

Impact Dissociation Inability

<u>2 Body segments</u> unable to execute opposite movement patterns:

(1) Arm extension leads to wrist/fingers extension(2) Arm extension leads to Trunk extension



Dissociation inability: overflow extension left wrist/fingers

Dissociation inability: overflow extension right wrist/fingers

Reverse Arm-pushing

Observation in Technical/Observational Assessment:

Can the athlete combine opposite movement patterns in the reverse pushing:
execution of only the *pulling* (flexion) movement or
also the *pushing* (extension) movement?

Impact Co-contraction/Dissociation inability on Ballhandling

One-handed: throwing/catching, dribbling, pick-up ball, fingertip test *Two-handed*: chestpass, pop-up

Co-contraction (one body segment: Arm) + Dissociation inability (two body segments: Arm-Trunk)

Dissociation inability: prefered twohanded dribbling

Dissociation inability: prefered twohanded receiving

Dissociation inability: prefered use other hand

Final Class Determination

Classification Formula WR: **UE + Tr = final class** (UE = Upper Extremity, TR = Trunk)

UE = Pp (pushing profile) + Bp (ball handling profile)

Central question: how is the arm/hand acting during Pushing & Ballhandling.

Impact Co-contraction/Dissociation inability

Trunk movements

Trunk Rotation

Physical assessment: may pass test 4, rotation

On court however.... co-contraction can prevent rotational movement.

→ Rotation to one side can only be done with relaxation of the other side at the same time.

Trunk Lateral Flexion

Physical assessment: may pass trunk test 5, lateral flexion

On court however.... co-contraction can prevent effective use lateral flexion.

 \rightarrow Lateral flexion to one side needs relaxation other side at same time

Class Danny?

Coordination impaired athletes

Lack of standardized assessment till now leads to:

Different approaches between classifiers
 Lack of reliability between panels
 Increased possibility of different outcomes

Example: Danny's national class: 3.0 (UE 2.5 + Tp 0.5) Danny's international class: NE (UE 3.0 + Tp 1.0)

Take home message

- Classifiers have to work with one protocol, one standardised assessment when evaluating athletes with coordination impairment,
- To prevent a variety of classification outcomes.
- Hopefully this work can be helpful to accomplish this.

Thank you